Theorem:

Let f be monotonically increasing on (a, b). Then f(x+) and f(x-) exist at every point x of (a, b). More precisely

$$\sup_{a < t < x} f(t) = f(x - 1) \le f(x) \le f(x + 1) = \inf_{x < t < x} f(t)$$

Furthermore, if a < x < y < b, then

$$f(x +) \le f(y -)$$

Proof:

Let f be monotonically increasing function on (a, b)

$$\Rightarrow f(t) \le f(x) \quad \forall t \in (a, x)$$

$$\Rightarrow f(x) \text{ is an upper bound of } \{f(t) | a < t < x\}$$

$$\Rightarrow \sup_{a < t < x} f(t) \text{ exists and } \sup_{a < t < x} f(t) \le f(x)$$

Let
$$A = \sup_{a < t < x} f(t)$$

Claim: A = f(x - 1)

Let $\epsilon > 0$ be given

Since $A = \sup_{a < t < x} f(t)$, there exists $\delta > 0$ such that $a < x - \delta < x$ and

$$A - \epsilon < f(x - \delta) \le A \rightarrow (1)$$

f is a monotonic increasing on (a, b) and $x - \delta < t < x$

$$\Rightarrow f(x - \delta) \le f(t) \le A \rightarrow (2)$$

From(1) & (2)

$$A - \epsilon < f(x - \delta) \le f(t) \le A < A + \epsilon \quad (a < x - \delta < t < x)$$

$$\Rightarrow A - \epsilon < f(t) < A + \epsilon \qquad (x - \delta < t < x)$$

$$\Rightarrow -\epsilon < f(t) - A < \epsilon \qquad (x - \delta < t < x)$$

$$\Rightarrow |f(t) - A| < \epsilon \qquad (x - \delta < t < x)$$

$$\Rightarrow f(x - 1) = A$$

$$\sup_{a < t < x} f(t) = f(x - 1) \le f(x) \implies (3)$$

 III^{ly} we can prove that

$$f(x +) = \inf_{x < t < h} f(t) \rightarrow (4)$$

From (3), (4) and
$$f(x) \le f(x+)$$

$$\therefore \sup_{a < t < x} f(t) = f(x - 1) \le f(x) \le f(x + 1) \le \inf_{x < t < x} f(t)$$

Let a < x < y < b

$$f(x +) = \inf_{x < t < b} f(t) = \inf_{x < t < y} f(t)$$

Also
$$f(y-) = \sup_{a < t < y} f(t) = \sup_{x < t < y} f(t)$$

We know that,

$$\inf_{x < t < y} f(t) \le \sup_{x < t < y} f(t)$$

$$\Rightarrow f(x +) \le f(y -)$$

Hence proved.

Theorem:

If f is monotonic on [a, b]. Then the set of discontinuities of f is countable.

Proof:

Let f be a monotonic increasing function on [a, b] and E be the set of all discontinuities of f on (a, b).

Let
$$s_m = \left\{ x_k \in (a, b) \middle| f(x_k +) - f(x_k -) \ge \frac{1}{m} \right\} \quad \forall m \in \mathbb{N}$$

Clearly

$$E = \bigcup_{m=1}^{\infty} s_m \longrightarrow (1)$$

Let
$$x_1 < x_2 < \dots < x_{n-1}$$
 be in s_m .

By theorem,

$$\sum_{k=1}^{n-1} [f(x_k +) - f(x_k -)] \le f(b) - f(a)$$

$$\Rightarrow \sum_{k=1}^{n-1} \frac{1}{m} \le f(b) - f(a)$$

$$\Rightarrow \frac{n-1}{m} \le f(b) - f(a)$$

Since f(b) - f(a) is always finite,

 s_m must contain only finite no of elements of (a, b)

 $\therefore E$ is the countable union of finite set (By(1))

 $\Rightarrow E$ is countable.

 \Rightarrow the set of discontinuities of f on [a, b] is countable.

 III^{ly} we can prove the result if f is monotonically decreasing on [a,b] Hence proved.